

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔 DATE: (日期):2017-05-03

1

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: KP 450V330μF(φ30x40)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPI	JER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

		SPECIFICAT	ALTERNA R	ATION HIST ECORDS	ORY		
Rev.	Date	KP SERIE Mark	2S Page	Contents	Purpose	Drafter	Approver
	Dute		<u> </u>	Contents	T uipose	Diator	1100101

Name		Specification Sheet – KP					
Version	01		Page	1			
STANDARD MANUAL							

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION KP SERIES	

Table 1 Product Dimensions and Characteristics

Z-TYPE

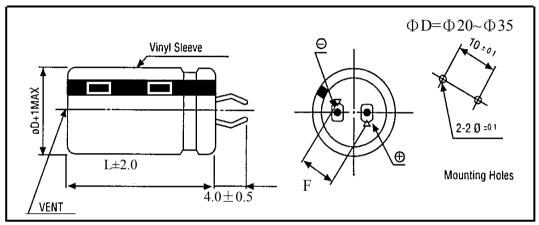


Table 1

N	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tan δ (120Hz, 20℃)	Leakage Current (µA,5min)	Max Ripple Current at 105°C 120Hz (A rms)	Load lifetime (Hrs)		ension mm) F	Sleeve
1	EKP337M2WP40SZ**F	450	330	-20%~+20%	-25~105	0.25	1156	1.45	3000	30x40	10±1.0	PET

Issued-date: 2017-05-03		Specification Sheet – KP							
Version	01	Page 2							
STANDARD MANUAL									

	(C O N T E N T S	Sheet
1.	Application		4
2.	Part Number System		4
2. 3.	Construction		5
<i>4</i> .	Characteristics		
			6~13
4.1	Rated voltage & Surge voltag	e	
4.2	Capacitance (Tolerance)		
	Leakage current		
4.4	tan δ		
4.5	Terminal strength		
4.6	Temperature characteristics		
4.7	Load life test		
	Shelf life test		
	Surge test		
	0 Vibration		
	1 Solderability test		
	2 Resistance to solder he	at	
	3 Change of temperature		
	4 Damp heat test		
	5 Vent test		
5. I	6 Maximum permissible (ripple List of "Environment-rel Substances')" Attachment: Application (ated Substances to be Controlled	('Controlled 14 15~20
	Name	Specification Sheet – KP	

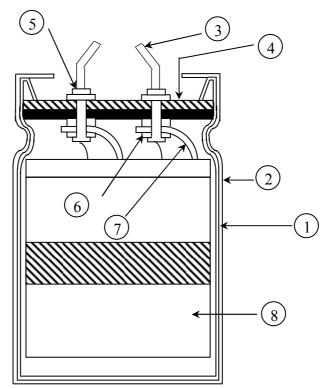
ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384. Part Number System

1 2 3 4 5 6 7 8 9 101112 1314 1516 17 SERVES 1005 Moto Moto 10	2. Pai	rt Numb	oer S	ystem								
SERVERS CAPACITANCE TOL VOLTAGE CASE SIZE TYPE DANXON SLEEVER Server 0.1 104 1.5 J 2.0 1.6 <td< th=""><th>12</th><th>3 4</th><th>56</th><th>3 7</th><th></th><th>89</th><th>E</th><th>10 11 12</th><th>2 131</th><th>14</th><th>1516</th><th>17</th></td<>	12	3 4	56	3 7		89	E	10 11 12	2 131	14	1516	17
Series Estatus	EG	S 1	0 5	5 IV		1 H		D 1 1	— Т (C	SA	Ρ
Series Cap(MFD) Code Tolderance (x) Code Catal Star Failure Code 0.1 104 ±.5 J 2.5 0.00 2.4 0.00 2.5 0.00 2.4 0.00 2.5 0.00 2.4 0.00 2.5 0.00	SERIES	GAP/	CITAN	CE TO	L.	VOLTAGE		CASE SIZE	TYP	E,		SLEEVE
ESK ECC 0.1 104 s 5 J 2 0D state Production state Production state </th <th></th> <th><u> </u></th>												<u> </u>
EKC 0.1 104 ±.5 J 2.5 CE 3.5 Feedulation Product lines Product lines EKM 0.2 224 ±.10 K 6.3 0.1 6.5 7 <th></th> <th>Cap(MFD)</th> <th>Code</th> <th>Tolerance (%)</th> <th>Code</th> <th></th> <th></th> <th>Case Size</th> <th>Feature (</th> <th>Code</th> <th>SAMXON Product L</th> <th>_ine</th>		Cap(MFD)	Code	Tolerance (%)	Code			Case Size	Feature (Code	SAMXON Product L	_ine
EXAM 0.33 334 Image: constraint of the second s	EKF	0.1	104	±5	J			3 B	Radial bulk	RR		×
EXAM 0.33 334 Image: constraint of the second s	EKS	0.22	224		$\left - \right $	4	0G	4 C	Ammo Tap	ing	we have H,A,B,C,D	
EXP 0.47 474 a:15 L 12.5 18 13.3 2 24mm Pitch TU ESCF 1 106 a:20 M 25 16 13.5 2 24mm Pitch TU ESCF 2.2 225 a:30 N 300 11 16.5 7 50mm Pitch TV ESCF 3.3 335 -00 W 332 13 16 16.5 7 50mm Pitch TV ESCF 3.3 335 -00 W 332 13 30 70 16.8 77 16.8 77 16.8 77 11.4 30 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 16.3 70 70 70 70 70 70 70 70 70	EKM			±10	ĸ			6.3 E 8 F			E,M or 0,1,2,3,4,5,9),
ESP EGAT 0.47 474 Date 12.5 18 3.3 J 18 16 17 18 17 EGAT 1 105 #20 M 20 10 13.5 J 13.6 A 35m Plich TV EGAT 2.2 2.25 ±30 N 300 11 10.5 4.7 35m Plich TV EGAT 2.2 2.25 ±30 N 300 11 11.5 7.7 35m Plich 7V 50m Plich TV EGAT 4.7 475 -00 A 360 11 13.5 7.7 11.6 43.7 67m Plich 7D PC PET P EFR 4.7 475 -00 A 500 11.4 35 7 CE 7D CE 7D	EOM	0.33	334	+15	L	10	1A	12.5	2.0mm Pitch		L	II
ESF EGT EGT EGT EGC 1 106 ±20 ±20 M 20 10 14.4 4.7 3.5mm Pich TV Storm Pich TV EGC 2.2 225 ±30 N 30 11 16.5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 6 7	EZS	0.47	474					13 J 13.5 V	2.5mm Pitch	ΤU		
EGC ECC ECC ECC ECC ECC ECC ECC ECC ECC	ESF	1	105	±20	м	20	1D	14 4	3.5mm Pitch	ти	Sleeve Material	Code
BERC 3.3 335 40 W 36 1V 10.2 10.2 N ERR 4.7 475 -20 A 36 1V 10.2 20 N ERR 10 106 -20 A 50 1H 35 0 R 20 N ERR 10 106 -20 A 50 1H 35 0 R 20 R ERR 22 228 -20 X 75 1T 63.5 1 1 45 40 R 80 1K 80 X 1D 1D<	EGK	2.2	225						5.0mm Pitch	тс	PET	Р
ENC 3.3 335 -40 W 36 1V -20 N Lead Cut & Form ENC 4.7 475 -20 A 350 1V -20 N EPER 4.7 475 -20 A 50 1H 30 P CE	EGC	2.2	225	±30		32	13	18.5 8				
EBD ERR 10 106 -20 +10 57 1L +10 40 +10 R +10 C -20 +10 57 1L +10 40 +10 R +10 C -20 +10 C +10 C -71 115 +15 40 +16 R +10 C -71 115 +15 C +10 HE-Type +16 HE ERA ERA ERA ERA ERA ERA ERA ERA ERA ERA	ERS	3.3	335	-40 0	w			22 N	Lead Cut &	orm		
EBD ERR 10 106 -20 +10 57 1L +10 40 +10 R +10 C -20 +10 57 1L +10 40 +10 R +10 C -20 +10 C +10 C -71 115 +15 40 +16 R +10 C -71 115 +15 C +10 HE-Type +16 HE ERA ERA ERA ERA ERA ERA ERA ERA ERA ERA	ERR	4.7	475	-20		42	1 M	30 P	СВ-Туре	СВ		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ERE	10	106	0				35 Q 40 R	СЕ-Туре	CE		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ERH			-20 +10	c			$\frac{10}{42}$ $\frac{1}{4}$ 45 6	HE-Type	HE		
ERC EFA ENP 33 336 +40 A 80 1K 76 U KD-1ype KD EFA ENP 47 476 -200 S 90 180 2X FD-Type FD ENP 47 476 -200 S 90 100 2A 45 55 EH-Type FD ENP 100 107 -10 B 122 220 EH-Type EH EXP 220 227 -10 V 150 22 7.7 77 FT EXP 330 337 -10 Q 180 2P 112 12 Snap-in SX EUP 2200 228 -5 E 220 20 </th <th>ERA</th> <th>22</th> <th>226</th> <th>-20</th> <th></th> <th></th> <th></th> <th>63.5 T</th> <th></th> <th>\vdash</th> <th></th> <th> </th>	ERA	22	226	-20				63.5 T		\vdash		
ENP 47 476 +50 S 35 1R 900 X FD-Type FD ENW 100 107 -10 B 120 220 EH-Type EH EH-Type EH FD-Type FD EAP 220 227 -10 V 125 28 7.7 77	ERC	33	336	+40		80	1K	76 U 80 8	KD-Type	KD		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ENP	47	476	-20 +50	s			90 X 100 Z	FD-Type	FD		
Lip BOP EOP ENDP 220 227 -10 +20 V 125 28 150 54 54 767 77 PCB Termial BUP ENP 330 337 -10 Q 180 227 11 <	ERW	100	107	-10		100	2A	Len.(mm) Code 4.5 45	EH-Type	EH		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ELP	100	107					5 05 5.4 54				
ETP EUP EUP EKP 330 337 -10 +330 Q 1100 220 115 131 SN EUP EKP 470 477 -10 +50 T 215 220 2D 115 131 135 135 135 135 135 135 135 135 135 135 135 122 220 2D 220 23 250 50 50	EQP	220	227	-10 +20	v	150	2Z	7.7 77	PCB lem			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ETP	330	337	-10				11 11		sw		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		470	477		$\left \right $			12 12 12 18	Snap-in	sx		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	EEP			+50	т			13.5 11C		sz		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EVP	2200	228	-5 +10	E			20 20 25 25				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EWR	22000	229				_	29.5 2.1	Lug	SG		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EWT	33000	339		<u>⊢ </u>			31.5 3A 35 35		05		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EWF		470	+20	G			35.5 3E 50 50		06		
EWB VSS VNS VKS 100000 10T 0 20 100 1M Screw Te VKS 150000 15T 0 0 1300 120 1M Screw Te VKS 150000 15T 0 1 3600 2X 1300 1M Screw Te VKS 150000 2T +5 2Q 140 100 De <	EWH	47000	479	0 +20	R			80 80 100 1L		T5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EWB	100000	10T	0				110 1M	Screw			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VNS VKS	150000	15T					130 1P		т6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VKM	220000	22T			100		150 1R 155 1E		D5		
1000000 10M +20 D 500 2H 180 1U 1000000 10M +10 Y 550 25 190 1V 1500000 15M +10 Y 600 26 215 2A 2200000 22M +10 H 220 2N 220 2N 3300000 33M 33M - - - -	VNH VZS				z			160 1S 165 1F		D6		
1000000 10M +20 550 25 190 1V 1500000 15M +10 Y 600 26 215 2A 1500000 15M +10 +30 H 2200 2U 210 2M 3300000 33M 33M - - - - - -	VRF	330000	33T	+5				180 10	L			
1500000 15M +10 +10 2200 22N 2200000 22M +30 H 220 220 3300000 33M 33M 270 2T		1000000	10M	+10	\vdash			190 1V				
3300000 33M		1500000	15M	+50	⊢ Ť			215 2A 210 2M				
3300000 33M		2200000	2214	+10 +30	н			220 2N 240 2Q				
		L						260 2R 260 2S 270 2T				
		3300000	33M					210 21	1			


Name		Specification Sheet – KP					
Version	01		Page	4			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Case	Aluminum case
2	Sleeve	PET
3	Terminal	Solder coated copper clad steel
4	Seal	Rubber-laminated bakelite
5	Rivet	Aluminum
6	Washer	Aluminum
7	Tab	Aluminum
8	Element	Aluminum foil & Electrolyte paper

Name		Specification Sheet – KP						
Version		Page	5					
STANDARD MANUAL								

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity: 60% to 70%Air Pressure: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2

Name		Specification Sheet – KP		
Version	01		Page	6
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

	ITEM				PEF	RFORM	IANCE					
	Rated voltage	WV (V .DC	2) 10	16	25	35	50	63	80) 1	00	160
	(WV)	SV (V.DC)) 13	20	32	44	63	79	10	0 1	25	200
4.1		WV (V.DC	C) 180	200	220	250	315	350	400	420	450	
	Surge voltage (SV)	SV (V.DC) 225	250	270	300	365	400	450	470	500	
4.2	Nominal capacitance (Tolerance)	Condition Measuring Measuring Measuring <criteria> Shall be with</criteria>	Frequenc Voltage Temperat	: N ture : 2	Not mo $20\pm2^{\circ}$	С	0.5Vrr					
4.3	Leakage current	<condition Connecting minutes, an <criteria> Refer to tab</criteria></condition 	the capa d then, m					tor (1	kΩ±	10Ω)i	in seri	ies for
4.4	tan δ	<condition See 4.2, No <criteria> Refer to ta</criteria></condition 	orm Capac	citance,	for me	easurin	g frequ	ency, v	oltage	and ter	npera	ture.
	Nama		Cn	acifics	tion 9	Shoot	ΚD					
	Name Version	01	Sp	ecifica	ation S	Sheet -	- KP			Page	. 7	

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

		<condition> A static load of 25N (2.5 direction away from the</condition>				ead wire tern	ninal in the axia
4.5	Terminal strength	<criteria> There shall be no intermi mechanical damage such</criteria>				circuit and t	here shall be n
		< <u>Condition></u>		-			
		STEP Testing Tem	-				
			<u>+2</u>			ch thermal e	_
		· · · · · · · · · · · · · · · · · · ·	25)±3			ch thermal e	
			± 2			ch thermal e	•
			$\frac{5\pm2}{\pm2}$			ch thermal each th	-
							-
4.6	Temperature characteristics	 a. In step 5, tan ^δ shall b The leakage current s b. At-40 °C (-25 °C), imped 	shall not mo	ore than	the speci	fied value	e of the
		following table:				,	
		Working Voltage (V)	10~25	35	50	63~100	160~450
		$Z-25^{\circ}C/Z+20^{\circ}C$	6	6	4	3	8
		$\frac{Z-40^{\circ}C/Z+20^{\circ}C}{Capacitance, \tan \delta, and}$	15 impedance	15 shall be	15 measure	15 ed at 120Hz	
		1 <i>))</i>	1				

Name		Specification Sheet – KP		
Version	01		Page	8
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

SAMXON

4.7	Load life test	temp 3000 work time <criter The Lea Cap tan App</criter 	ing voltage) at atmosphe characterist kage curren δ bearance	$05^{\circ}C \pm 2$ s. (The su) Then the eric condi- ic shall n t	No.4.13 methods, The with DC bias voltage of DC and ripple pea- product should be test tions. The result should neet the following requi- Value in 4.3 shall be so Within $\pm 20\%$ of init Not more than 200% There shall be no leak	plus the rated ak voltage sha ted after16 ho d meet the foll irements. satisfied tial value . of the specific	ripple cu all not exc ours recov lowing tal	rrent for eed the rated ering
4.8	Shelf life test	for 100 Follow allowe Next t voltag tested <crit< b=""> The o Lea Cap tan</crit<>	pacitors are 00+48/0 how ving this pe- ed to stabiliz- hey shall be- e applied for the character eria> characteristic kage current bacitance Ch δ bearance ark: If the ca	urs. riod the o zed at roce e connect or 30min. eristics. c shall m t nange	red with no voltage appropriate the following requires the following requires value in 4.3 shall be so within \pm 15% of initial Not more than 150% of the compares the following requires the following requires the following requires within \pm 15% of initial Not more than 150% of the compares the following requires the	loved from the hours. resistor($1k \pm 1$ bitors shall be rements. satisfied tial value . of the specifie cage of electro year, the leak	e test cha 00 Ω) wir discharge d value. blyte cage curre	mber and be th D.C. rated ed, and then,
	Nam	e		Specif	ication Sheet – KP			
	Version		01				Page	9

STANDARD MANUAL

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

4.9	Surge test	resistor. The capacitor $\pm 5s$, follower The test temp C_R :Nominal <criteria></criteria> Leakage cur Capacitance tan δ Appearance Attention: This test sim	te ChangeWithin $\pm 15\%$ of initial value.Not more than the specified value.
4.10	Vibration test	perpendicular Vibration free Peak to peak Sweep rate <criteria></criteria> After the test Appeara Inner construc	quency range : 10Hz ~ 55Hz amplitude : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute t, the following items shall be tested: ance electrolyte or swelling of the case. The markings shall be legible. r No intermittent contact, open or short circuit. No damage of tab terminals or electrodes. nethod: The capacitor must be fixed in place with a bracket. Space < 1mm
	Nam	e	Specification Sheet – KP
	Version	01	Page 10
			ANDARD MANUAL

г

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

		<condition></condition>	
		The capacitor shall be teste	ed under the following conditions:
		Soldering temperature	: 245±3°C
		Dipping depth	: 2mm
		Dipping speed	: 25±2.5mm/s
		Dipping time	: 3±0.5s
4.11	Solderability	<criteria></criteria>	
	test	Coating quality	A minimum of 95% of the surface being immersed
			mmersed
		260 ± 5 °C for 10 ± 1 second the body of capacitor .	shall be immersed into solder bath at s or400 \pm 10°Cfor3 ⁺¹ ₋₀ seconds to 1.5~2.0mm from e left under the normal temperature and normal fore measurement.
		<criteria></criteria>	Not more than the medified value
		Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 10\%$ of initial value .
4.12	Resistance to solder heat	tan δ	Not more than the specified value.
4.12	test	Appearance	There shall be no leakage of electrolyte

Name		Specification Sheet – KP		
Version	01		Page	11
	STA	NDARD MANUAL		

ELECTROLYTIC CAPACITOR **SPECIFICATION** KP SERIES

SAMXON

4.13 Change of temperature test	According oven, the (1)+20°C (2)Rated (3)Rated (1) to (3) <criteria></criteria>	ure Cycle: to IEC60384 condition acc Ter low tempera high tempera =1 cycle, tota teristic shall t current	4-4No.4.7 methods, ca cording as below: mperature ture(-40°C) (-25°C) ature (+105°C) al 5 cycle meet the following req Not more than the Not more than the There shall be no le	$ \begin{array}{r} T \\ \leq 3 \\ 30 \pm 2 \\ 30 \pm 2 \end{array} $ uirement specified v specified v	Value.
4.14 Damp heat test	be exposed 40±2°C, th <criteria> Leakage c</criteria>	est: to IEC60384- for 500 ± 8 h the characteris urrent ce Change	4No.4.12methods, cap ours in an atmosphere tic change shall meet t Not more than the spe Within $\pm 20\%$ of init Not more than 120% of There shall be no leak	of 90~95 the following the followi	%R H .at ng requirement. ue.
Name		Specifica	tion Sheet – KP		
Version	01				Page 12

STANDARD MANUAL

Page 12

ELECTROLYTIC CAPACITOR SPECIFICATION KP SERIES

		D.C. test The capacitor is connected a current selected from Ta			ed to a DC	power source.	Thon
				icu.		-	THCH
4.15	Vent test	22.4 or less	Current (A)				
		Over 22.4 Criteria> The vent shall operate wit of pieces of the capacitor		ous condition	ns such as t	flames or dispe	rsion
		<condition> The maximum permissible at 120Hz and can be appli Table-1 The combined value of D.0 rated voltage and shall no Frequency Multipliers:</condition>	ed at maxim	um operatin l the peak A	g temperat	ure	d the
I	Maximum permissible (ripple	Coefficient (Hz) Voltage (V)	60	120	1k	10~50k	
4.16	current)	10~100V	0.90	1.00	1.15	1.25	
		160~250V	0.80	1.00	1.25	1.47	
		315~450V	0.80	1.00	1.30	1.47	

Name		Specification Sheet – KP		
Version	01		Page	13
	STA	ANDARD MANUAL		

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
Tiedvy metals	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
Brominated organic compounds	Polybrominated biphenyls (PBB)					
	Polybrominated diphenylethers(PBDE) (including					
	decabromodiphenyl ether[DecaBDE])					
	Other brominated organic compounds					
Tributyltin comp	oounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo con	npounds					
Formaldehyde						
Polyvinyl chlorid	de (PVC) and PVC blevds					
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Name		Specification Sheet – KP			
Version 01			Page	14	
STANDARD MANUAL					

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20° C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tan δ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Name		Specification Sheet – KP				
Version 01			Page	15		
STANDARD MANUAL						

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

- (2) Capacitors Connected in Series Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.
- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board. When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Name		Specification Sheet – KP				
Version 01			Page	16		
STANDARD MANUAL						

 (4) Clearance for Case Mounted Pressure Relief vents Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows. \$\phi 6.3 \circ \phi 16mm:2mm minimum, \$\phi 18 \circ \phi 35mm:3mm minimum, \$\phi 40mm or greater:5mm minimum.
(5) Clearance for Seal Mounted Pressure Relief VentsA hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.
(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
 (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
 (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (3) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product characteristic should take the sample as the standard.
1.8 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Name		Specification Sheet – KP			
Version	01		Page	17	
STANDARD MANUAL					

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k \Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^\circ$ C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Name		Specification Sheet – KP			
Version	01		Page	18	
STANDARD MANUAL					

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
- The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- . Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- . Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Name		Specification Sheet – KP				
Version 01			Page	19		
STANDARD MANUAL						

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water. If electrolyte or gas is ingested by month, gargle with water. If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

The characteristics of aluminum electrolytic capacitors degrade when stored in a static condition for long periods of time. The rate of deterioration depends upon temperature and humidity.

Capacitors should be stored at the temperature of 5 $^{\circ}$ C to 35 $^{\circ}$ C, the humidity of less than 75% RH and out of direct sunlight.

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes .

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

* Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

* Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Name		Specification Sheet – KP				
Version	01		Page	20		
STANDARD MANUAL						